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The Euler similarity criteria for laboratory experiments and time-dependent mixing transition are 

important concepts introduced recently for application to prediction and analysis of astrophysical 

phenomena. However Euler scaling by itself provides no information on the distinctive spectral 

range of high Reynolds number turbulent flows found in astrophysics situations. On the other 

hand, time-dependent mixing transition gives no indication on whether a flow that just passed the 

mixing transition is sufficient to capture all of the significant dynamics of the complete 

astrophysical spectral range. In this paper, a new approach, based on additional insight gained 

from review of Navier-Stokes turbulence theory, is developed. It allows for revelations about the 

distinctive spectral scale dynamics associated with high Reynolds number astrophysical flows. 

From this perspective, we caution that the energy containing range of the turbulent flow 

measured in a laboratory setting must not be unintentionally contaminated in such a way that the 

interactive influences of this spectral scale range in the corresponding astrophysical situation 

cannot be faithfully represented.  In this paper we introduce the concept of a minimum state as 

the lowest Reynolds number turbulent flow that a time-dependent mixing transition must achieve 

to fulfill this objective. Later in the paper we show that the Reynolds number of the minimum 

state may be determined as 1.6×105. Our efforts here can be viewed as a unification and 

extension of the concepts of both similarity scaling and transient mixing transition concepts. At 

the last the implications of our approach in planning future intensive laser experiments or 

massively parallel numerical simulations are discussed.   A systematic procedure is outlined so 

that as the capabilities of the laser interaction experiments and supporting results from detailed 

numerical simulations performed in recently advanced supercomputing facilities increase 

progressively, a strategy can be devised so that more and more spectral range dynamic structures 

and their statistical influences on evolving astrophysical flows can be progressively extended in 

laboratory investigations. 
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1. Introduction 
 
In recent decades, improved instrumentation and advances in observational machinery 

and techniques have uncovered many new features and a revised picture of the incredibly 

rich complexity of evolutionary phenomena in extraterrestrial space [1-2]. At the same 

time, advances in laboratory scale experimental techniques such as use of modern high 

energy intensive pulsed laser beams have achieved capabilities which can produce energy 

densities in submillimeter-scale volumes that otherwise are only manifest in actual 

astrophysical events [see review by Remington et al., references 2-3].  Beam target 

materials, pulse duration, energetic drive, etc. can be reproducibly prepared for 

generating conditions closely simulating scaled features of astrophysical events. These 

techniques are presently recreating aspects of astrophysical phenomena in the laboratory. 

This is tantamount to creation of experimental testbeds where theory and modeling can 

be quantitatively tested against astrophysical observations (so called Laboratory 

Astrophysics). In a laboratory setting, the initial conditions, diagnostic techniques, and 

energetic laser drives can be carefully controlled. A recent example was presented by 

Robey et al. [4] where an experimental testbed was designed using the Omega laser [5] 

for the study of the hydrodynamic issues of significance in studying supernovae [6-7].  It 

is anticipated that the much more powerful laser facilities currently under development 

such as the National Ignition Facility (NIF) [8-9] and French Laser Mégajoule (LMJ) 

[10-11], will provide enhanced opportunities for conducting much more advanced 

research in laboratory astrophysics [12].   
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As noted by Ryutov, Drake, and Remington, et al. [13], in the laboratory setting, the 

spatial and temporal scales are, roughly speaking, in the range of tens of micrometers and 

tens of nanoseconds. These scales are 10 to 20 orders of magnitude less than those of real 

astrophysical events (see Table 1, reproduced from data in Ref. [14]).  From a 

hydrodynamic perspective, the turbulent flow and mixing in observed astrophysical  

events such  as supernovae are associated with very high outer scale Reynolds numbers 

(Re ~ 1010 ). Note here that the outer-scale Reynolds number Re is defined as Re = δ u /ν 

[15]. Here u is the characteristic velocity, δ  is the characteristic flow structure outer 

length scale, and ν is the kinematic viscosity. 

 

In contrast, the typical Reynolds number that can be achieved in a laboratory experiment 

is 105 – 106  [14].  Naturally, concern emerges as to whether this is of sufficient 

magnitude to investigate the physics of actual astrophysical events.  In effect legitimate 

questions may be anticipated about the degree of confidence with which once can apply 

the laboratory results to interpretation of astrophysical phenomena [13].   

 

Two recent efforts have been made in an attempt to address this question. First, Euler 

scaling has been proposed to relate the astrophysical problems to a laboratory 

experiment. For a system adequately described by the Euler equations, similarity criteria 

required for properly scaled experiments have been identified [13-14]. Second, in a high 

energy density physics (HEDP) experiment, the evolution of a turbulent mixing state 

always originates from accelerated (i.e. unsteady) development of flow instabilities. 

Corresponding to these accelerated conditions an unsteady turbulent mixing transition 
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criterion and a procedure for modeling and predicting the required time interval to 

achieve transition have been proposed [16-17]. This is an outgrowth and extension of the 

model analysis developed for stationary flows [18,19].  

 

In this paper, we will first review these two recently developed concepts and point out the 

outstanding issues associated with them (Sec. 2). From the framework of general 

statistical Navier-Stokes turbulence theory one finds that the laboratory and astrophysical 

spectral ranges can and should be considered individually because of their significantly 

different interactive dynamics and influential spatial and temporal ranges.  In this paper 

we introduce the concept of a “minimum state,” which is the turbulent flow state with the 

lowest Reynolds number in a laboratory setting that can faithfully reproduce the most 

significant (so called “energy containing”) scales of an astrophysics problem (Sec. 3).  In 

Sec. 4, we will discuss the design requirements of the drive, timing, and diagnostic 

instruments (Sec. 5).  The final section, Section 6, contains summary and conclusions.  

 

2:  Euler Scaling and Time-dependent Mixing Transition 

 

A. Euler scaling 

 

Similarity scaling is a familiar tool widely used to study issues physics generally but it 

may possess special emphasis in plasma physics [see for example, ref. 20]. Motivated in 

part by the general viewpoint of Zeldovich & Raizer [21] and Sedov [22], the Euler 
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similarity relationship [13] has been proven very helpful [2,4,12-14] in the development 

of laboratory astrophysics.  

 

The Euler equation in conjunction with mass and energy conservation reads [23] 

  

 

 

 

The first of these equations is the momentum balance equation, the second is the 

continuity equation, and the third representing the conservation of energy appears here in 

the form of an entropy conservation equation for a polytropic gas.  Ryutov et al. [13] 

noted that under the scaling transformation 

 

 

 

the Euler equation remains invariant, as long as the following Euler number is preserved 

 

 

The Euler equations, while generally useful for laboratory scaling, are limited by neglect 

of viscosity (Ryutov and Remington [24] were aware of this issue and have suggested 

several novel experiments to help resolve the sensitivity).  This limitation to Euler scaling 

can be traced back to the fact that significant physical viscous features such as growth 

and dissipation of vorticity only develop when the full Navier-Stokes equation is applied.  
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Of particular interest here, Euler scaling does not provide information on the specific size 

range of statistical dynamic flow structures that can be scaled accurately.   

 

The distinctive spectral scales are a hallmark of high Reynolds number turbulent flows. 

From the theoretical turbulence (Navier-Stokes) perspective, the presence of strong 

nonlinear interactions creates a profoundly complex multiple scale dynamic problem for 

investigation.  The reader is referred to Fig. 1, which is a nearly comprehensive 

superposition of energy spectra compiled from a large variety of wind-tunnel and 

geophysical flows [25]. The challenge is to account for all the statistical scales of motion, 

starting from the largest (lowest wave number) where the energy injection occurs to the 

smallest, the Kolmogorov dissipation scale [26], where viscous energy dissipation acts as 

an absolute limit to the macroscopic scales of motion.  (The Kolmogorov scale is given 

by,  4/13
)( ε

νλ =K ,  where ν is the kinematic viscosity and ε is the dissipation rate 

[15,26]).  The low wave number energy injection scale limit is where external forcing 

acts to drive the system. The evolution of the energy containing scales governs the 

overall development of the flow field [15,26].   With less than Navier Stokes generality 

as a basis, Euler scaling is not able to reveal the physical influences of these distinctive 

spectral ranges. 

 

B. Time-dependent mixing transition 

 

Many experiments have been conducted in classical fluid dynamics facilities, shock 

tubes, and laser facilities (such as the Omega laser) to understand the complex 
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phenomena.  Due to diagnostic limitations typical measurements consist solely of the 

growth of the mixing zone width.  While these widths (of the bubble and spike fronts, 

individually or combined) are usually measured, it is difficult to know whether or not a 

particular experiment has reached mixing transition.  (It should be noted that the 

analysis of time-dependent mixing transition is applicable to any flow.  However, the 

published examples [16-17] were specialized to the Rayleigh-Taylor [27-29] and 

Richtmyer-Meshkov [30-31] flows). This type of information cannot be easily obtained 

from flow visualization [17]. 

  

The mixing transition concept for stationary fluid flows, developed at Caltech [18,19], 

refers to the transition to a turbulent state in which the flow drives rapid mixing at the 

molecular scale.  This turbulent state leads to rapid dissipation of momentum and of 

concentration fluctuations (mixing).  The classical Kolmogorov theory [26] assumes the 

existence of an inertial range, where the dynamics are isolated within an intermediate 

scale range, λ , which cannot be influenced by the outer, low frequency scales, δ  , where 

turbulent energy is produced, nor can it be influenced by the inner, high frequency, 

viscous dissipation scales  

                                                      λ λ δK << << .                                                  

Dimotakis [19] proposed that the extent of the effective inertial range could be 

narrowed to 

                                            δλλλλ ν <<<<<< −TLK , 

Here the lower-limit of the inertial range is the inner viscous scale λ λν = 50 K , where 

the Kolmogorov microscale can be rewritten as λ δK = −Re /3 4 . The upper-limit of the 
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inertial range is the Liepmann-Taylor scale TTL λλ 5=− , where λ δT = −Re /1 2  is the well 

known Taylor correlation microscale [26].  

 

We have extended the stationary mixing transition to time-dependent flows and applied 

it to a wide range of experiments [16-17].  The Liepmann-Taylor scale essentially 

describes the internal laminar vorticity growth layer generated by viscous shear along 

the boundaries of a large-scale feature of size δ . The temporal development of such a 

laminar viscous layer is well known to go as (νt) 1/2  (Stokes [32], Rayleigh [27], Lamb 

[33]).   

                                                       λ D = C (ν t)1/2 

Hence, the upper bound of the developing inertial range is the smaller of the Liepmann-

Taylor scale, TL−λ  and λ D .  Here the coefficient of the diffusion layer, C, was 

suggested as C ≈ 15  both for isotropic, homogeneous turbulence [34] and for steady 

parallel flows, and as C ≡ 5 [35] for laminar boundary layer flows (following the 

Liepmann-Taylor constant by Dimotakis [19]).  

 

The inertial range is presumed to be established when the evolution of the large-scale, 

},min{ TLD −λλ , is decoupled from the inner viscous scale, λν .  For time-dependent 

flows, the mixing transition is achieved when a range of scales exists such that the 

temporally evolving upper bound [ },min{ TLD −λλ ] is significantly larger than the 

temporally evolving lower bound, λν . Thus, the mixing transition occurs if and when 

the inequality [16-17] 
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( ) )(50)(}),(min{ tttt kDTL λλλλ ν ≡>−    

is satisfied. 

 

In designing and interpreting experiments for time-dependent flows, the time-dependent 

mixing transition provided the desirable ability to estimate the time required to achieve 

the mixing transition state. However, one may ask, is a flow that has just passed the 

mixing transition enough to capture all the physics of energy-containing scales? 

If not, how high must the Reynolds number be? 

 

3.  The Minimum State  

 

As indicated in Table 1 (data from Remington and Ryutov [14]), the astrophysics 

problems of interest (Supernova was used as an example in the table), have extremely 

high Reynolds numbers.  From an application perspective, accurate description of the 

time-dependent, three-dimensional evolution of the energy-containing scales may be all 

that is needed. Therefore, it is important to capture these scales accurately (all relevant 

length scales are summarized in Table 2 for the convenience of the reader [36]).   

 

The determination of the Reynolds number for the minimum state is based on detailed 

studies on energy transfer associated with interacting scales [references 37-41]. The limit 

to the reach of a wavenumber k where it may directly interact is with the mode that is 

twice the size of its own value.  (All more distantly separated interactions decay too 

rapidly for influence as evidenced by the -4/3 scaling drop off of  disparity parameter  vs. 
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energy flux in the inertial range [37-38,42]).  Recall that the highest wave number 

(smallest length scale) of the energy containing scales (k’ ⊆ [0, kL-T] ) is  kL-T,  beyond 

which appears the beginning of  the inertial range. To prevent the energy containing 

scales from being contaminated by the dissipation scales demands that a critical 

wavenumber, hereafter denoted kZ ≡2 kL-T, be located in the inertial range.   

 

The minimum state is defined as the turbulent flow which has the lowest Reynolds 

number that captures the energy containing scales of the astrophysics problems in a 

laboratory or simulation setting.  The minimum state is therefore the lowest Reynolds 

number turbulent flow where all the modes in the energy containing scales  

(k’ ⊆ [0, k*L-T]) will only interact with modes in the same spectral range or those within 

the inertial range ( [0, k*L-T] ∪ (k*L-T, k*ν]). Obviously, this requirement is introduced to 

take full advantage of the universality of the inertial range.  

 

The minimum state, according to this definition, is the turbulent flow that takes the value 

of kZ equal to the inner-viscous wavenumber (the end of the inertial range):  k*Z ≡ 2 k*L-T 

= k*ν   (see Fig. 2). Using the definition of  kL-T  and kν, one finds that the critical  

Reynolds number of the minimum state is  Re* =1.6 × 105.  

 

Note that the outer-scale Reynolds number is approximately related to the Taylor 

microscale Reynolds number by Rλ = (20/3)1/2 Re1/2  in isotropic flow [34] and               

Rλ ≈  1.4 Re1/2  for turbulence in the far field of a jet [43,44].  As a result, the 
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corresponding critical Taylor-miscroscale Reynolds number of the minimum state is    

(1.4-2.58) × Re1/2  (Rλ * ≈ 560-1033). 

 

The minimum state is the baseline turbulent state that any laboratory astrophysics 

experiments (or computations using astrophysical simulations codes) must be achieved. 

This requirement is needed in order to faithfully reproduce the interactive dynamics and 

their influences on the energy containing scales of the original astrophysical situation.  

The dynamics of this most important spectral scale [26] can be scaled down from an 

extremely high Re astrophysical turbulent flow to a high, but manageable Re flow in 

either laboratory experiment or a simulation setting.  

 

Recall once again that the inertial range is bounded between the Liepmann-Taylor scale 

and the inner-viscous wavenumber, [kL-T, kν].  For a turbulent flow in the minimum state, 

the inertial range of the astrophysics phenomenon will not be reproduced accurately in a 

laboratory setting. The reason is that modes of the inertial range of the minimum state 

may interact directly with those in the dissipation scales. The dissipation scale in a 

turbulent flow is not universal and depends on the Reynolds number [45,41]. As a result, 

the inertial range modes will be contaminated in the minimum state. 

 

After establishing the significance of the minimum state in the laboratory astrophysics, 

the experiments (or simulations) should achieve Re* or higher.  The first implication of 

our analysis is that the intensity or the timing of the drive or the materials must be 

adjusted for achieving or surpassing this goal. 
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4. The similarity scaling based on Navier-Stokes turbulence 

 

At this point, it is necessary to introduce the resolution cutoff of the diagnostics (denoted 

as λC in physical space or kC in wavenumber). In this section, for the sake of brevity, the 

cutoff wavenumber is chosen to be the same as the Liepmann-Taylor wavenumber, 

namely kC = kL-T . In next section, a more general situation will be discussed and the 

desired requirement for the diagnostic resolution will be determined as  kC  ≥  kL-T. The 

rational for this choice will be given in some detail in next section. 

  

The Navier-Stokes equation can now be divided into the resolvable (k ≤  kC ) and subgrid 

scales (k  >  kC ). For obvious reason, the new similarity scaling will be constructed for 

the resolvable scale only (k ≤ kC). The resolvable scale Navier-Stokes equation can be 

written as 

 

 

where  u<  and u>  denote the resolvable and subgrid scale velocity fields, respectively.  

The parameter µ is the dynamic viscosity [46] and for simplicity in this example the flow 

is assumed either incompressible or weakly compressible.  
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The energy transfer resulted from the distant interactions, u>u>,  has been shown to 

behave in the same fashion as that of the molecular viscosity [47]. The subgrid-subgrid 

interactions can be therefore satisfactorily modeled as eddy viscosity, µ(r) (or  

µ(k) in wavenumber space).  The resolvable Navier-Stokes equation can then be written 

as  

 
 
 

For the cutoff wavenumber kC (as long as it is in an inertial range,  kC ≥ kL-T ), the statistic 

turbulence closure theories lead [47-49] to 

 
 
We now take further advantage of the observation that the flows of interest are essentially 

incompressible. The Mach number of a RT induced turbulent flow [27-29] is restricted to 

a very low value [50]. Also, the RM induced turbulence flow [30-31] can be viewed as a 

freely decaying incompressible flow [51-52]. 

 

The resolvable scale Navier-Stokes equation now is ready for a scale similarity analysis. 

From the astrophysics to the lab framework, the scaling transformation is given by 
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The scaled Navier-Stokes equation in the laboratory framework is  
 
 

 
and remains an invariant in relation to that of the original form for the astrophysics 
setting. 
 
 
 

5. Resolution requirement, scale up, and statistical subgrid modeling  

 

A. Resolution requirement: 

 

For the sake of brevity, we have so far restricted ourselves to the simple case where the 

diagnostic cutoff wavenumber of the resolution, kC  takes the same value as that of the 

boundary between the energy-containing and inertial ranges, the  Liepmann-Taylor 

wavenumber, kL-T.  For a given Reynolds number there are three situations that one may 

encounter (for all relevant length scales, see Table 2) in an experiment. These different 

scenarios will depend on the limitations to the refinement of  the diagnostics resolution 

used for the experiment.  Specifically, different situations arise based on whether all of 

the energy containing scales, [0, kC], can be resolved by the instrumentation.   The 

simplest one is the one we have already employed in last section, kC  =kL-T. Another 

possibility is the undesirable situation where not all the modes in the energy containing 
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scale (kC  < kL-T) will be resolved. This clearly undesirable possibility need not be 

considered further here.  

 

The last possibility is when the resolution is excessively fine,  for example when  kC  >  

kL-T.  While generally additional refinement in the resolution may seem desirable, one 

should note that it is not necessary to refine the resolution over the value of  (1/2)kν.   This 

limit on the resolution refinement is firm for any given flow field, since beyond that, the 

resolved scale range will include contaminated modes that have interacted directly with 

the dissipation scale.  

  

This subsection leads to the second implication of our analysis to the experimental 

design, now in terms of the diagnostic instrumentation.  Once the Reynolds number of an 

experiment is determined, the requirement for resolving the range of contained scales or 

some greater range will immediately inform the experimentalist of the resolution required 

(for an illustrative example, see Table 3). 

 

B. A recipe for planning an experiment: 

 

For the convenience of the reader, the implications of the theoretical analysis for planning 

a HEDP experiment to achieve the Reynolds number at the minimum state or beyond is 

summarized below. 
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Step 1.  Choose the materials and drive carefully to achieve the minimum state or beyond  

(Re ≥  Re*=1.6 ×105 ).  

 

The viscosity is evaluated, the outer scale or the characteristic velocity is computed, and 

the Reynolds number is determined.  

 

Step 2.   Design the diagnostics to insure that the resolvable scale or beyond can be 

captured. 

 

Several other useful parameters are next determined (see table 2), including the 

Liepmann-Taylor wavenumber, kL-T   the inner viscous wavenumber, kν, and the critical 

wavenumber of the minimum state,  kZ = 2kL-T. The highest wavenumber that needs to be 

resolved is  kν/2. 

 

Step 3. Post experiment data analysis.  

 

The captured domain from the experiment can be subdivided into two parts: ∆kE= [0,    

kL-T]  represents the energy containing scales and  ∆kI =  [kL-T,  kZ]  represents the inertial 

range scales ( kZ ≤ kν/2, note again that the resolution does not need to extend beyond 

kν/2).  The corresponding spectral scales of astrophysical flow situations under study can 

be determined using the scaling transformation. 
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C.  Plan of future experiments:  scale up in Re 

 

The scaling analysis in this paper does offer suggestions for planning future HEDP 

experiments. It is reasonable to expect that the capabilities of future experiments will 

advance progressively with increased intensity of drives and increased sophistication of 

the diagnostics capabilities.  

 

Let the very first experiment (serving as the baseline) be denoted experiment 0.  Denote 

the subsequent experiments representing future increasing facility capability as 

experiments {1, 2, ..N}.  In turn, the values of the experimental Reynolds number and 

diagnostic resolution refinement may be denoted: 

 

             {Re0, Re1,….., ReN-1, ReN }   and    {kC
0, kC

 1,….., kC
 N-1 , kC

 N}   

where Re0< Re1<….. <ReN-1< ReN and kC
0> kC

 1>…..> kC
 N-1 > kC

 N. 

 

A sequence of succeeding experiments can be utilized to increase the spectral range of an 

astrophysical situation that can be reproduced in the laboratory.  The baseline experiment, 

introduced previously in last subsection, is established as an experiment to achieve the 

Reynolds number of the minimum state or beyond   Re0 ≥Re*.  The second requirement is 

that the cutoff of the resolution resolves all the energy containing scales.   The baseline 

experiment, of course, captures at the energy containing scale where Re0 =Re* . In the 

case of  Re0 ≥Re*, a fraction of the inertial range may also be captured.    
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This process can be repeated with incremental increases in resolution as the values of the 

Reynolds numbers become higher and higher. At the same time, more and more spectral 

scales (specifically, larger and larger fraction of the inertial range) will be captured in the 

experiment facility since the resolution cutoff wavenumber also becomes higher and 

higher. Therefore, incrementally more spectral information attending an astrophysical 

event can be reproduced in the laboratory environments as the development and 

refinement of the facilities proceed.  

 

D. Small scale statistics modeling: 

 

While the subgrid scales cannot be measured directly, some statistical properties of the 

inertial range are available from statistical turbulence closure theories [53]. Essentially, 

the fundamental building block of the energy transfer, the triadic interaction function, 

T(k,p,q), follows the self-similarity relationship [53,37-38] 

 

                                            T(k,p,q) = a3 T(ak,ap,aq), 

 

for three dimensional turbulence. This scaling works well as long as all six wavenumber 

are located in the inertial range (This requirement is met here since the cutoff 

wavenumber of the resolution, kC  takes the value kC  >  kL-T).  

 

The triadic interaction transfer function is a relationship that will provide all the statistical 

information in an inertial range. Since the energy in the inertial range is transferred from 
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the energy containing scale, a matching condition is needed to complete the subgrid 

modeling procedure.  

 

According to Kolmogorov [26], the energy flux (ε) is the only link that connects the 

energy containing scale to the universal inertial ranges. The energy flux is given by [26] 

                       ε = Dε ũ3/δ, 

where  Dε is a constant and ũ is the characteristic velocity of the energy containing eddies 

[26,54-59]. 

 

The overall level of the triadic interaction function can now be set. Note that [15,26] 

                  ε= ∫ T(k) dk 

Here        T(k) ≡ ∑{p,q}T(k,p,q) 

and T(k,p,q) is the triadic interaction function [37-38, 41] (wavenumbers k,p,q all in the 

inertial range). 

 

It is useful to note that the statistical information can also be recovered for a high Re two-

dimensional flow. A corresponding interaction relationship also exists for two 

dimensional turbulent flows [53]. For two dimensional situations a parallel procedure can 

be trivially developed and applied but further elaboration is not considered justified in 

this paper. . 
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6.  Summary and conclusions 

 

In this paper, we have considered two concepts that are highly relevant to laboratory 

astrophysics: the Euler similarity scaling between astrophysics problem and laboratory 

experiment and the time-dependent mixing transition.  The limitations of these concepts 

are discussed in order to illustrate where progress is urgently needed.  Specifically, with 

Euler scaling alone, we are unable to give consideration to the distinctive spectral range 

of high Reynolds number turbulent flows characteristic of astrophysical events under 

study.. On the other hand the recently developed time-dependent mixing transition 

criterion by itself gives no indication as to whether a flow that just passed the mixing 

transition is sufficient to capture all the physics of the important spectral range. A new 

framework, based on Navier-Stokes statistical turbulence flow theory, has been 

developed that unifies and extends these two concepts. The distinctive spectral scales, the 

characteristics of high Reynolds number astrophysical turbulent flows, may now be 

considered. A minimum state is introduced as the lowest Reynolds number turbulent state 

in a laboratory or computation setting that insures that the energy containing scales are 

not contaminated by the dissipation scales.  The minimum state also provides the lowest 

Reynolds that a laboratory experiment or a numerical simulation of time-dependent flow 

must achieve. This critical Reynolds number is found to be 1.6×105, an order of 

magnitude higher than the Reynolds number that corresponds to transient mixing 

transition.  At the same time, as long as the Reynolds number of a flow has passed this 

critical Reynolds number, the energy containing scale of an astrophysical event can be 

faithfully reproduced. Finally, the high energy density intense pulsed laser facilities. 
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supercomputer platforms, and diagnostics instrumentation and techniques can be 

expected to progressively improve in successive stages over time.  A strategy is needed 

and has been offered in detail so that an experimentalist may be able to systematically 

adapt advances in high intensity lasers, measurements, and refined diagnostic analyses  to 

recover more distinctive information on spectral spatial structure and statistical details 

influencing the evolution of astrophysical events.  
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1.7×1062.6×1010Re

0.340.29Eu

4.27.5×10-3ρ (g/cm3)

1.3×1052×107u (cm/s)

5.3×10-39×1010r (cm)

Laboratory 
experiments

SN1987aParameters

Table 1. Comparing parameters of a SN1987a plasma in the He-H 
transition layer and parameters of the laboratory experiment.   
Data from Table 1 of Ryutov and Remington (ref. 14)



The length 
scale that 

separates the 
resolvable and 
subgrid scales. 

This is the 
smallest 

physical length 
scale that the 

diagnostic 
instruments 
can resolve

The  
smallest 
physical 

scale 
beyond 

which the  
energy 

containing 
scale will not 

interact 
directly. It is 
defined as  

(λL-T /2).

Our theory 
demands it 

resides 
within the 

inertial range 

The inner-
viscous 

length scale. 
This is the 

lower 
boundary of 
the inertial 
range. This 
length scale 

separates the 
inertial and 
dissipation 

ranges. 

Note that 2λν
is the finest 
length scale 
needed for 
diagnostics

The Liepmann-
Taylor length 
scale. This is 

the upper 
bound of the 
inertial range. 

This length 
scale separates 

the energy 
containing and 
inertial ranges. 
Note that the 

minimum state 
requires that 
the energy 
containing 

scale, [λL-T, δ], 
is resolved

The Kolmogorov 
length scale. The 

viscous 
interaction

dominates at 
smallest length 

scales

The outer 
scale. The 

largest scale of 
the flow

Note and 
remarks

(The 
remarks on 
this row will 
be based on 
the physical 

length 
scales)  

kCkZkνkL-TkηkδWave-
number 

(2π/length)

λCλZλνλL-TληδLength 
scale

Table 2. nomenclature of all relevant length scales



1.0×10-52.0×10-55.6×10-65.3×10-31.7×106

λZ   (cm)

(λZ = 0.5λL-T)

λL-T   (cm)λν (cm)δ (cm)Re

Table 3. The length scale values for the typical laboratory experiment in Table 1 (data taken from Ryutov and 
Remington, 2002, ref. 14). The outer length scale is 5.3×10-3 cm and the outer scale Reynolds number is 1.7×106. 
The upper (Liepmann-Taylor) and lower (inner-viscous) boundaries of the inertial range are 2.0×10-5 cm and 
5.6×10-6 cm, respectively. The energy containing scale of this experiment will not interact with the physical length 
scales with their values smaller than λZ, which has the value of 1.0×10-5 cm.



Energy containing scales, external forcing 

Fig. 1. Distinctive spectral scales from a large collection of the wind-tunnel and geophysical experiments (reproduced from Ref. 25). The 
values of the Reynolds numbers here are based on the Taylor microscale [refs. 15 and 26]. The compensated longitudinal energy spectra 
is plotted against the longitudinal wave number, which is normalized by the Kolmogorov length scale. Note that there are very strong 
Reynolds number dependences in the dissipation spectral scales. For these flows with high Reynolds numbers, there are extended inertial 
ranges which may exist over several decades. The energy containing scales, of course, are different from flow to flow because of the 
different external driving forces.



Minimum Problem: Manageable high Re 
Turbulent Flow that captures the physics of 
the energy containing scales

Kd

= Kν

Kη

E(k)

Original Problem:
Very High Re 
Turbulent Flow :         

KC ≡ KL-T

KC=KL-T

KZ=2KC

KZ = 2 KL-T

The minimum State: Re required in 
a laboratory experiment or 
numerical simulation: 1.6 × 105

Fig. 2. The illustration of the minimum state. This is the turbulent flow that has the 
lowest Laboratory-Astrophysical representative Reynolds number, but with sufficiently 

extended inertial range to insure that the energy containing scale will not be 
unintentionally contaminated by the dissipation scale.  The Reynolds number of the 

minimum state, a universal value, may be determined as 1.6×105. This is can be 
obtained by requiring that Kν = KZ = 2 KL-T


